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Abstract. It is shown that root lattices and their reciprocals might serve as the right pool 
for the construction of quasicrystalline structure models. All non-crystallographic sym- 
metries observed so far are covered in minimal embedding with maximal symmetry. 

For the construction of quasiperiodic tiling models by means of projection from 
higher-dimensional periodic structures, the primitive hypercubic lattices are the most 
frequently used ones. This has pragmatic reasons: the lattice Z" is simple, exists for 
every positive integer n, and its symmetry (point as well as space group) is well known. 
Furthermore, a simple method for the generation of quasiperiodic tilings from these 
lattices has been established [ 11 which is based on a dualization scheme. However, 
the choice of Z" is too restrictive because several patterns either require an embedding 
which is non-minimal with respect to the dimension of the lattice one starts from (like 
the Penrose pattern figure l (a) ,  usually derived from Z5 while a 4~ lattice suffices, see 
below) or are even impossible this way (like the triangle pattern, figure l (b) ) .  

The question now is how to select suitable candidates from the infinite pool of 
higher-dimensional lattices which combine the minimal embedding of the crystal- 
lographically forbidden symmetries with a systematic and simple description. It is well 
known [2] that there is, up to similarity transformations, only one simple Fourier 
module in the plane for each non-crystallographic k-fold symmetry (up to k = 46) and 

(a )  ( b )  
Figure 1. Quasiperiodic patterns as obtained from the root lattice A,, the Penrose pattern 
( a )  with two classes of vertices and the triangle pattern ( b )  with two different bond lengths. 
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a triple of Fourier modules in 3-space with icosahedral symmetry. Therefore, from the 
viewpoint of general quasiperiodic densities, a single generating lattice each may be 
sufficient. However, from the tiling point of view, there are several inequivalent 
examples to be expected for each symmetry. Because a classification of tilings is not 
in sight, the question for a set of fundamental examples arises again. 

Following this path, one is almost automatically guided to hypercubic centrings 
and to root lattices, or, as is immediately apparent, to root lattices and their reciprocals. 
Hypercubic centrings (i.e. centrings of the primitive hypercubic lattice with the full 
hypercubic point symmetry) give nothing new for n = 1 and n = 2, because they are 
equivalent to the primitive case. For n = 3 one has the FCC and the BC:C structure, the 
same being true for n > 4 [3], where they are called F-type and I-type structures, 
respectively, Only n = 4 shows a higher symmetry: F-type and I-type are equivalent 
and they possess a point group three times larger than the primitive lattice Z4. This 
specific 4~ lattice will be of some importance in what follows. 

Root lattices are those lattices which are generated by so-called root systems [4,5], 
i.e. which are formed by all integer linear combinations of the vectors (roots) of those 
systems. These root systems form a certain class of vector stars with specific symmetries, 
lengths, and angles (cf [4,6]). They occur in different contexts, e.g., in the classification 
of crystallographic finite reflection groups [6] or in the classification of finite- 
dimensional semisimple Lie algebras [5]. For the root lattices, one can derive [4] the 
list A n ( n 2  l) ,  Z " ( n 3 2 ) ,  D , (n24) ,  E , ,  E , ,  and E,  of basic lattices, the orthogonal 
direct sums of which constitute the whole class of root lattices. 

The crystallographic point group of a root lattice coincides with the automorphism 
group of the corresponding root system, wherefore this group is easily accessible 
(cf [5,6]). The possible angles between Voronoi vectors, i.e. those vectors which actively 
contribute to the determination of the generalized Wigner-Seitz or Voronoi cell [4], 
are multiples of 60" or 90°, thus weakly generalizing the hypercubic situation (only 
multiples of 90") which, of course, is contained. The Voronoi vectors of the basic 
lattices listed above are just the shortest elements of the generating root systems. 
Furthermore, all root lattices are sublattices of their reciprocals [4] (which is tantamount 
to the property that the scalar product between any two lattice vectors is an integer). 

Let us now come to relevant examples. We will briefly stress the non-crystallographic 
symmetries observed so far. This selection can be regarded as an experimental input. 
Nevertheless, it is important to mention that applications of root lattice projections 
are certainly not restricted to these special cases. In 3-space, one has only the icosahedral 
symmetry which is both irreducibly represented and genuinely non-crystallographic. 
There are three different Fourier modules possible with icosahedral symmetry [2] which 
can, in minimal embedding, be obtained as a projection of the primitive (observed 
first in [79), the F-type [8], and the I-type (no experimental evidence found up to 
now) hypercubic lattice in R6, respectively. But these three lattices are-up to normaliz- 
ation-just Z6, D6, and D;, so we are back to root lattices and their reciprocals (cf [9] 
and [ 101 for tiling models based on iZ6 and D6 , respectively). This means that one can 
build tiling models for these three cases from three easily accessible lattices. Among 
others, the advantages are a systematic description, an analytic access to vertex and 
similar local statistics and a well defined Fourier theory. Furthermore, there is no other 
lattice with larger point symmetry which still contains a subgroup isomorphic with the 
full icosahedral group. 

Let us now focus on 2~ quasilattices with rotational symmetries of order 5 ,  8, 10, 
and 12, which occur in Nature in the form of sections through so-called T-phases 
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[ 11, 121 perpendicular to the symmetry axis. The minimal embedding requires 4~ space 
(since cp(k) = 4  for k = 5,8, 10,12, where ‘Q’ denotes the Euler function, e.g., see [13]). 
The root lattices provide these embeddings with maximal symmetry, i.e. there will be 
no lattice of the same dimension which does the same job with a higher symmetry. 
The most prominent example, the Penrose pattern (figure l ( a ) ,  and its partner, the 
triangle pattern (figure l (b) ) ,  are obtained from the root lattice A,  [14]. The dimension 
of A4 is four, hence it is minimal. The point symmetry that survives the projection is 
described by the dihedral group d , ,  and there is no ‘larger’ lattice in 4~ space which 
could resolve A,, hence A4 yields maximal symmetry. This can be directly extracted 
from the classification of 4~ space groups [15]. Furthermore, this covers both the 
fivefold and the tenfold symmetries depending on the decoration of the tiles. 

An eightfold symmetry can either be realized by means of H4-which gives the well 
known planar octagonal quasilattice [ 161-or by means of 0, [ 171, the only hypercubic 
centering in R4, see figure 2. This octagonal D4 pattern is built from three triangular 
tiles, see figure 2, and allows a locally determined regrouping into the h4 pattern which 
is not possible vice versa. Hence, it is natural to consider the H4 pattern as a submodel 
of the 0, pattern. Furthermore, the latter has the advantage that a pattern with 
twelvefold symmetry can also be obtained from 0, by means of a projection in a 
slightly different direction, see figure 3. This dodecagonal 0, pattern is built from four 
triangular tiles and seems to contain other dodecagonal patterns [ 13,181 as submodels 
again. Additionally, one can describe a continuous transition [ 171 between the octagonal 
and the dodecagonal phase by means of a 4~ rotation which is compatible with fourfold 
symmetry. The latter is a subsymmetry of the eightfold as well as the twelvefold pattern 
within the strict dualization scheme and Klotz construction [ 191, which all patterns 

Figure 2. Quasiperiodic Octagonal pattern (left) as obtained from the root lattice 0, and 
projection image of the Voronoi cell of D4 in perpendicular space. 

Figure 3. Quasiperiodic dodecagonal pattern (left) as obtained from the root lattice 0, 
and projection image of the Voronoi cell of D, in perpendicular space. 
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shown are based on. This will provide a framework for the description of alloys like 
Vl5NilOSi [ 121 which show both symmetries in the same chemical composition. 

The list of examples given above cannot imply completeness because, on the one 
hand, one can easily derive further patterns with a whole variety of symmetries (e.g., 
a heptagonal pattern may be obtained, in minimal embedding, from the 6~ root lattice 
A6) and, on the other hand, the relation to different other tilings [13, 18,201, which 
may stem from a larger class of lattices is to be investigated in detail. This is important, 
because it is well known that manifestly inequivalent tilings (like the Penrose pattern 
and the triangle pattern) can exist which nonetheless share the same Fourier module. 
Currently, there is no observation of a further symmetry which is forbidden crystal- 
lographically. For the observed ones, root lattices seem to provide the right basis for 
structure models. Furthermore, it turns out that the minimal embedding in these 
experimentally realized cases always requires a description in a space with only twice 
the dimension of the quasiperiodic tiling. This phenomenon-if it is not accidental- 
should have some physical meaning while, mathematically, it is related to a certain 
class of deflation/inflation invariance of the quasiperiodic patterns involved. The 
physical aspect certainly is an interesting question for future investigations. 

This work was supported by Deutsche Forschungsgemeinschaft, Australian Research 
Council, and Alfried Krupp von Bohlen und Halbach Stiftung. 
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